Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree
نویسندگان
چکیده
In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S−1)-transform and Patel’s algorithm, the structurepreserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig in MATLAB. Mathematics Subject Classification (2000) 65F15 · 15A18 · 15A57
منابع مشابه
Backward errors and linearizations for palindromic matrix polynomials
We derive computable expressions of structured backward errors of approximate eigenelements of ∗-palindromic and ∗-anti-palindromic matrix polynomials. We also characterize minimal structured perturbations such that approximate eigenelements are exact eigenelements of the perturbed polynomials. We detect structure preserving linearizations which have almost no adverse effect on the structured b...
متن کاملStructured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures
We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملSmith Forms of Palindromic Matrix Polynomials
Many applications give rise to matrix polynomials whose coefficients have a kind of reversal symmetry, a structure we call palindromic. Several properties of scalar palindromic polynomials are derived, and together with properties of compound matrices, used to establish the Smith form of regular and singular T -palindromic matrix polynomials over arbitrary fields. The invariant polynomials are ...
متن کاملStructured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems
We consider the normwise condition number and backward error of eigenvalues of matrix polynomials having ⋆-palindromic/antipalindromic and ⋆-even/odd structure with respect to structure preserving perturbations. Here ⋆ denotes either the transpose T or the conjugate transpose ∗. We show that when the polynomials are complex and ⋆ denotes complex conjugate, then to each of the structures there c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 118 شماره
صفحات -
تاریخ انتشار 2011